Q.F	. Code: 20	ME0.	303					1.							112	U
Re	g. No:						7.13									
	SIDDE	IADT	'H ING	STITI		FEN	CINE	FDIN	C &	TEC	UNI)CV.	DUTTI	I D	
	SIDDI	IANI	11 114	51110	UIEU	(AI	GINE	OMOI	IS)	IEC		OLC	GI::	runt	K	
	B.Teo	h I Y	ear l	Seme	ester \$	Supp	lemer	ntary	Exan	ninat	tion	s No	ovemb	er-202	1	
					BAS	SIC T	HERM	NOY	AMI	CS						
					(/	Agricu	ltural	Engin	eering)						
Ti	me: 3 hours	3												Ν	lax. M	larks: 6
				(A	nswer	all Fiv	e Unit	s 5 x	12 = 6	0 Ma	arks)					
							UNI	T-I								
1 a	State the	differ	ences	betwe	een hea	t and	work.	1.4/3							L1	6M
ł	What do	mean	by pro	operty	"? Dis	tingui	sh bety	ween i	ntensi	ve ar	nd ex	tens	ive		L1	6M
							0]	R								
2 a	State the	follow	ving												L1	8 M
	i) State	ii) Pa	th ii	i) ther	rmodyr	namic	cycle	iv) E	Enthal	ру						
b	Different	iate b	etween	1 the c	eyclic p	proces	s and 1	10n-cy	clic p	roces	SS				L2	4M
							UNI	Г-II								
3 a	The air i	n a s	ystem	expan	nds fro	m a t	emper	ature	of 60	0C to	o 30	00C	at a c	onstant	L3	6M
	pressure	of 2	bars. (Calcul	late the	e heat	trans	fer, w	ork de	one a	and o	chan	ge in i	nternal		
	energy. T KJ/Kg ^o K	The m for ai	nass of r.	f the	air is (0.6 K	g. Ass	ume (Cp=1.	02 K	J/Kg	g⁰K	and C,	= 0.71		
b	State seco	ond la	w of t	hermo	odynan	nics									L1	6M
1 0	State the	00000	ntofo	ntuon	v of co	a and	OI	K 16:1:4	and w	:	1-1-11	:4			τ 1	
+а ь	Explain a	bout	pt of t	nuop	y or ga ina rat	is and	avana	onity		navai	laon	ny				6IVI CM
D	Explain a	loout	ine nea	u eng.	me, rei	ngera			t pum	p.						0111
_	W/hat is t			· · · ·	C:11		UNII	-111								
эa ь	State Del	ton'a	equai			gas?										6M
D	State Dal	ton s	law 01	partia	ar press	sures	01	0							LI	OIVI
5 9	Derive ar	evnr	eccion	for w	vork do	ne dui	ing is	x othern	nal pre	20000					τ.4	6M
, a b	0.2 kg o	f air	at nre	ssure	of 1.1	hars	and	15° c i	s con	nnres	sed	isot	hermal	v to a	13	6M
Ň	pressure of 5.5 bars											113	UIVI			
	Calculate (i) final volume (ii) heat rejected (iii) change in internal energy Assume															
	R= 0.292	KJ/K	g K		()	j	()								
			U				UNIT	-IV								
7 a	Explain the	he P-V	/. P - T	T-S	diagrar	ns of	Pure S	ubstat	ices						1.2	6M
b	Derive an	expr	ession	for th	ermal	efficie	ency &	t mear	effec	tive	press	sure	of a du	al	L4	6M
	combusti	on cyc	ele by	drawi	ng PV	and T	'S diag	rams.			1					0112
					C		OI	2								
3 a	Derive an	expr	ession	for th	e therr	nal ef	ficienc	ey of C	Carnot	cycl	e and	d dra	aw P-V	& T-S	L4	6M
	diagrams	1		.1 1			.,		C 1		0.00		• ••	1 1		
b	Find the o	unang	e in ei	itnalp	y stear	n, init	ial pre	essure	5 bar	and	0.98	the	n 1t Wil	I reach	L3	6M
	in nar and	1 / 111	TETTA	TALLTPP	-											

Q.P. Code: 20ME0303

L2

6M

UNIT-V

- 9 a Explain with the help of neat diagram about Regenerative Cycle.
 - b State the advantages of Regenerative cycle over Rankine cycle, and explain effect of L1 6M operating conditions on Rankine cycle efficiency.

OR

- 10 a Describe the different operations of Rankine cycle and also derive the expression for L1 6M its efficiency.
 - b In a Rankine cycle, the steam at inlet to turbine is saturated at a pressure of 30 bar L3 6M and the exhaust pressure is 0.2 bar. Determine. (i) The pump work, (ii) Turbine work, (iii) Rankine efficiency, (iv) Condenser heat flow, (v) Dryness fraction at end of expression. Assume flow rate of 12kg/s.

*** END ***